

SYNTHETIC GENOMICS®

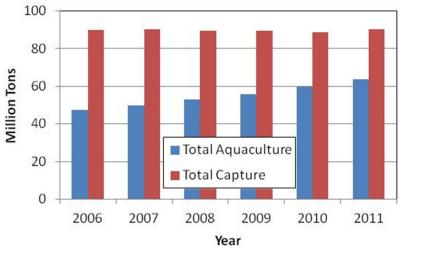
Algae-based feed ingredients for aquaculture: synergies from microalgal fuel industry

Miguel Olaizola and Justin Butler

ProAlgae Conference

Bergen, April 30 2013

Outline

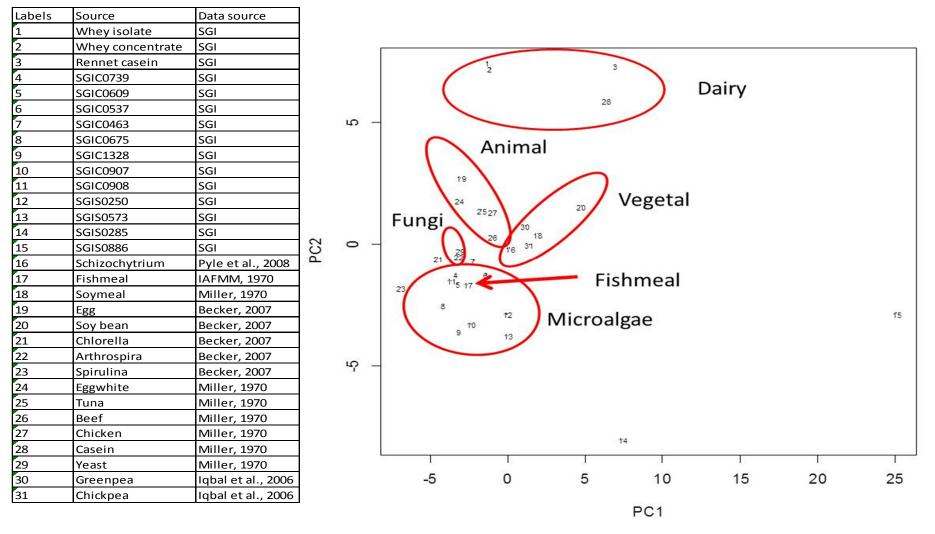

- Issues with fish oil and fishmeal
 - Aquaculture versus wild catch and demand/pricing
- Microalgae as a source of nutrition
 - Proximate analysis
 - Protein source
 - Lipid source
 - Micronutrients
- Microalgae environmental advantage
 - Water and nutrients
- Synergies with
 - Biofuels
 - CO₂ capture
- Production of microalgae at scale
 - Issues of cost and scale
- Synthetic Genomics' strategy
 - Facilities
 - Enhancement of desired traits

Fishmeal, Peru Fish meal/pellets 65% protein, US\$/Metric Ton (http://www.indexmundi.com/) 2500 2000 US\$/Ton 1500 1000 500 0 Jan-83 Jul-88 Dec-93 Jun-99 Dec-04 Jun-10 Date Fish oil and soybean oil prices in the Netherlands (http://www.greenfacts.org/en/fisheries/) US\$/tonne 2 000 Fish oil Soybean oil 1 600 1 200 800 400 0 Jun 90 92 94 96 00 02 04 06 08 86 88 98

Issues with fish oil and fishmeal

Fisheries vs. aquaculture production of aquatic food 2006-2011. It is expected that aquaculture production will surpass fisheries within the next 5 years. Data from FAO, 2012.

Microalgae nutritional advantage: proximate analysis


microalgae can provide complete protein with lipids

Source	Protein crude%	Pepsin digestibility%	Oil %	Fiber crude%
Menhaden	64.2	92.8	8.9	
Target	65.0	>85	12.0	
Tetraselmis	49.1	<i>93.2</i>	13.7	0.4
Rhodomonas	45.7	90.1	25.1	2.1
Pavlova	57.5	92.1	82.7	0.0
Nannochloropsis salina	51.0	82.7	20.4	1.5
Nannochloropsis gaditana	45.7	63.0	18.7	1.0
Navicula	48.9	85.0	18.8	0.4
SGI573 (Haptophyte)	46.6	92.1	25.1	0.1
Isochrysis	41.2	92.1	17.0	0.1
Pophyridium-a	35.9	79.3	7.7	0.7
Pophyridium-b	40.0	83.9	10.4	0.0
SGI286 (Prymnesiophyte)	39.0	89.1	26.5	0.4
Other non-SGI strains				
Maximum	86.0	65.5	48.5	
Minimium	2.0	4.0	11.0	
Average	20.1	45.5	22.7	

Microalgae nutritional advantage: proteins

similarity with fishmeal

Microalgae nutritional advantage: lipids

microalgae provide required HUFA

Fatty acid composition of menhaden oil and microalgae strains from SGI culture collection. (*Pavlova* SGI-609 and *Cyclotella* WT-SGI-E-00293)

Microalgae nutritional advantage: micronutrients

microalgae also represent good or excellent sources of important micronutrients

	Salmonid requirements	Algae average (mg in 100g algae or	Algae provides (at 10% in feed it
Micronutrients	(mg/kg dry feed)	per kg of feed at 10% inclusion)	provides % needed)
HUFAs			
DHA Omega-3	10000	640	6%
EPA Omega-3	10000	1200	12%
DHA + EPA (Australia-NZ)	10000		
Vitamins			
Vitamin A and β-carotene	1.35	10.5	777.78%
Vitamin B1 (thiamine)	12.5	2.2	18%
Vitamin B2 (riboflavin)	25	2.5	10%
Vitamin B6 (pyridoxine)	15	0.22	1%
Vitamin B12 (cobalamin)	0.0175	0.06	342.86%
Vitamin C	125	14.3	11.4%
Vitamin E	75	31.6	42%
Folate	8	0.35	0%

Microalgae environmental advantage

		Water footpring	
Water footprint: kg water/kg biofuel	Feedstock	kg water/kg biofuel	
	Maize	4015	
	Sugarcane	3931	
	Potatoes	3748	
	Soybean	13676	
	Switchgrass	2189	
	Microalgae	<i>591-3650</i> ⁺	
	+Range due to variations in recycle rate		

Nutrient footprint: kg nutrient/10 gal fuel

Nutrient	Corn grain ethanol ¹	Soybean diesel ¹	Algae biodiesel ²	Algae w/ recycled biomass ^{2,3}
Nitrogen	7	0.1	5	1.5
Phosphorus	2.6	0.2	0.2	0.2
1 Hill et al 2006				
2 Pate et al 2011				
+Assuming a 70% rec	cycle efficiency			

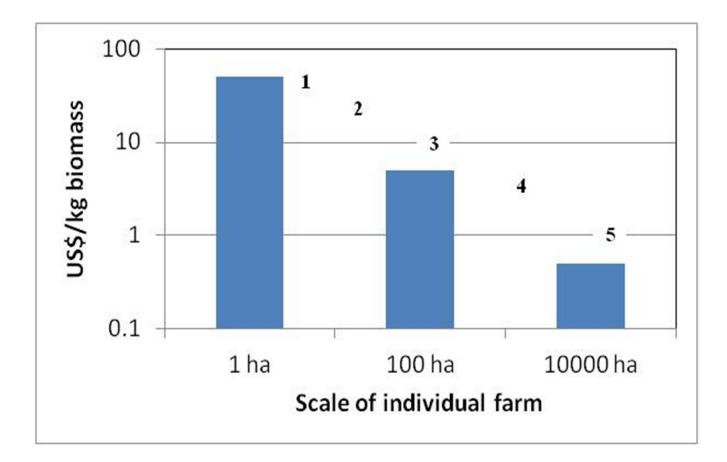
Possible synergies (Biofuels)

- Biofuels require very large facilities
- Microalgal biofuels may produce large quantities of by-products
 - High in protein
 - Likely defatted: but distillation possible
- Microalgal biofuels will not be here for many years
 - Issues with cost
 - Issues with scale
 - Differences in scale
- Of course, if we solve for biofuels, we will have solved for feeds.

Possible synergies (CO₂ capture)

Examples of microalgal cultures grown on flue gases and waste heat.

Microalgae production at commercial scale Problem of cost


Estimated ranges of costs for microalgal biomass and microalgal products.

	Green water	r Arthospira	Haematococcus
US\$/kg dry biomass	\$0.10	\$5.00	\$100.00
Production and Processing	None	Minimal	Significant
Cost of 1 kg of			
70% component	\$0.14	\$7.14	\$142.86
30% component	\$0.33	\$16.67	\$333.33
3% component	\$3.33	\$167	\$3,333
1% component	\$10	\$500	\$10,000

Microalgae production at commercial scale Problem of cost

Predicted relationship between crop value and farm size based on present knowledge.

Microalgae production at commercial scale Problem of scale

Scale of large microalgal farms. From left to right and top to bottom: Earthrise, Cyanotech, Sapphire and Parry Nutraceuticals/Valensa.

Synthetic Genomics' Strategy

- Facilities
 - Laboratory and Greenhouse
 - Field station in Imperial County
- Process optimization
 - Field productivity
 - Dilution rate
 - Batch vs continuous
 - Harvest strategy
 - Lamellar settling
 - Hydrocyclones
 - Flocculation
 - Centrifugation
- Biology optimization
 - Robustness
 - Photosynthetic efficiency
 - Carbon partitioning
- Products and markets

SGI San Diego and Imperial facilities

Growth units

- 20 x 1.9 m² ponds
- 3 x 15 m² ponds
- 3 x 70 m² ponds
- 3 x 192 m² ponds
- 6 x 400 m² ponds
- 4 x 3200 m² ponds
- 7 x 4000 m² ponds
- Several racks with 100 L enclosed PBRs

Other structures

- 2 buildings for control room, offices and general day use (110 m² and 160 m²)
- 2 buildings for laboratory, small scale cultivation, processing and shop space (400 m² and 700 m²)

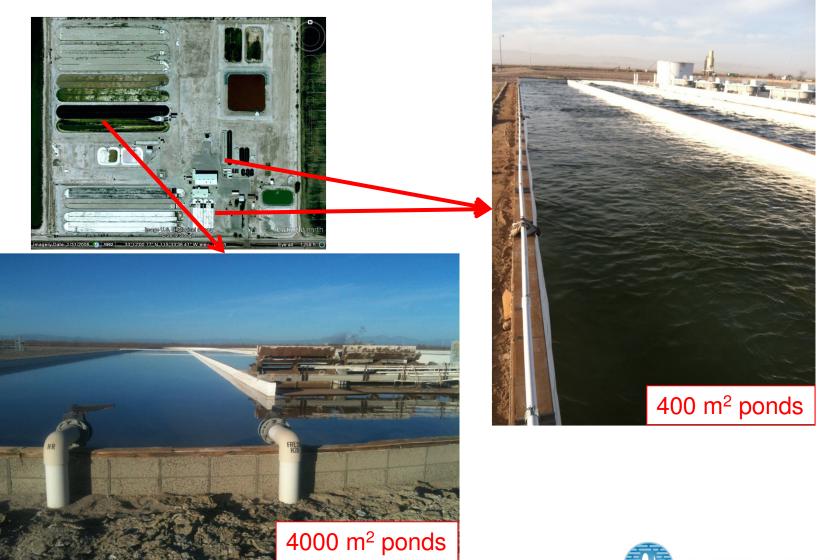
Microalgae production: R&D scale

Pilot scale facilities for microalgal technology research at Synthetic Genomics.

Greenhouse 100 L PBRs and 1.9 m² ponds

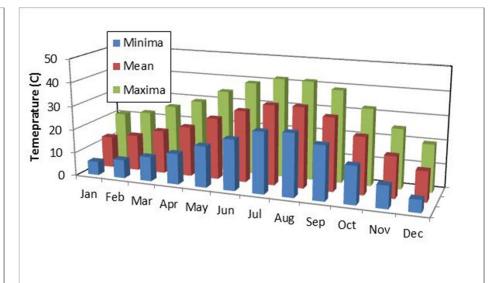
100 L PBRs

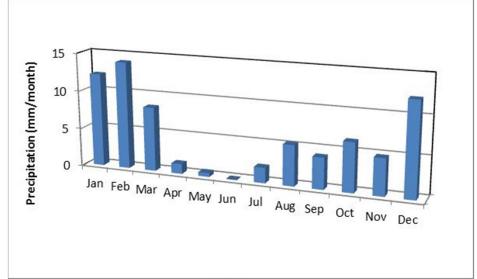
1.9 m² ponds



Outdoor 1.9 and 70 m² ponds used for strain robustness

Microalgae production: Production scale


Production scale facilities for microalgal technology research at Synthetic Genomics.



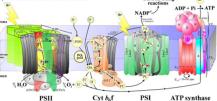
SGI Imperial Valley facility: growth conditions

- Very sunny
 - Average (year) radiation: 5.6 kWhr/m²/d
 - Winter low: 3.1 kWhr/m²/d
 - Summer high: 8.0 kWhr/m²/d
- Very warm
 - Winter minima: 5.3°C
 - Summer maxima: 41.8°C
- Very dry
 - Winter: "wet" season

Natural Microalgae Exhibit Individually Desired Traits

Synthetic Biology technologies required to combine traits, and coordinately channel energy into desired commodity product

- Photosynthetic efficiency
 - photosystem antenna size
 - energy-wasting, non-photochemical processes
 - energy coupling reactions
 - futile reaction cycles (e.g. RuBisCO)
- Carbon partitioning to target molecule
 - down-regulate competing pathways
 - <u>constitutively</u> up-regulate biosynthetic pathways
 - precursor and co-factor supply
- Tolerance to production environment
 - temperature
 - halotolerance
 - microbial contaminants & predators



proprietary lipid-accumulating eukaryotic microalgae

Photosynthetic Efficiency Challenge in Mass Culture

natural algae response to changing light environment limits productivity

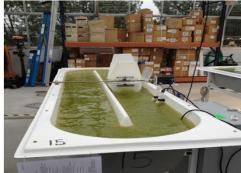
	 Iow productivity Algae respond to self shading by "selfishly" building a large light harvesting antenna
	 The larger antenna further exacerbates the self shading leaving much of the pond in darkness
Low light acclimated wild type algae	 The larger antenna drives saturation of photosynthesis at low light intensities with the excess absorbed light actively dissipated as heat
	high productivity
	 high productivity Algae engineered to attenuate response to changes in light field
	 Algae engineered to attenuate response to
Engineered, semi-synthetic algae	 Algae engineered to attenuate response to changes in light field Less light is absorbed and therefore the

Engineered Algae with Desired Phenotype

SGI has engineered algae for increased light penetration and improved photosynthetic efficiency

same cell density

Chlorophyll content per cell (pg/cell)

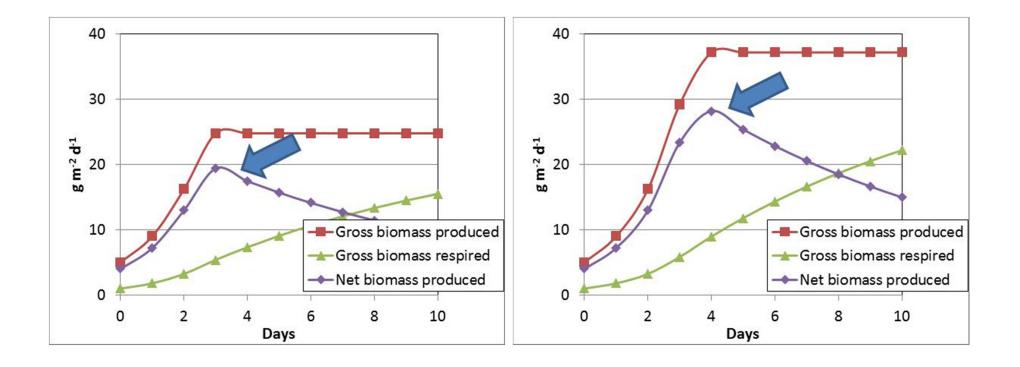

Wild Type0.12Engineered species0.03

Max. photosynthetic rate (umol O₂/hour/mg chl)

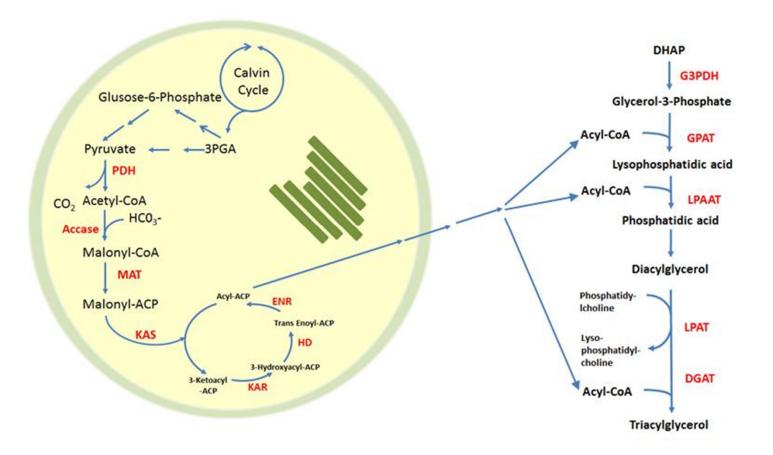
Wild Type	161
Engineered species	405

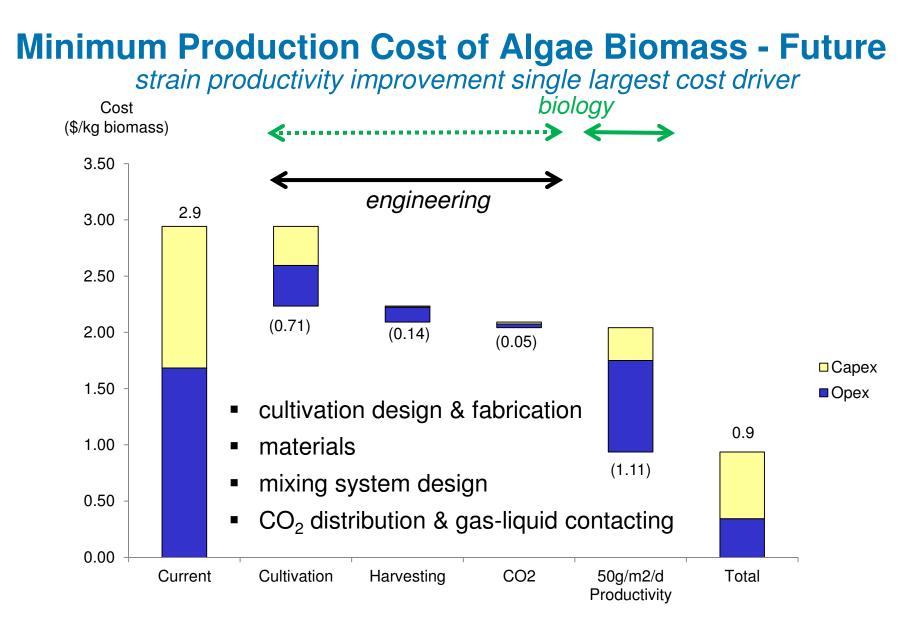
• One third Wild Type levels of chlorophyll

- Rate of photosynthesis per cell unchanged therefore the photosynthesis per unit chlorophyll is almost three times higher
- Much greater light penetration into culture
- Data confirm modified physiological response to changes in light field



Optimization: photosynthetic efficiency

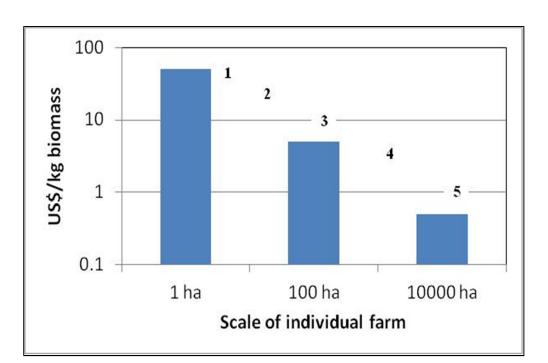

Effect of a 50% increase in photosynthetic efficiency (from 2%-left to 3%-right) on algal productivity.



Optimization: carbon partitioning

Areas of targeted modifications for improved carbon partitioning to lipid.

Current assumes 200 ha facility; 17 g/m2/day, inoculum bioreactors, power plant flue gas at 10 km, 70% CO2 utilization, open pond raceways, chemical floc to 1% + centrifuge, evaporation ponds, land cost at \$8,750/ha, 10 year depreciation, indirect costs of 83%, contingency of 25%


Product and Market

Progression of scale and value

- Need small markets (scale issue) of higher value $(1\rightarrow 2)$
 - In the feeds area
 - High value ingredients
- Next, larger markets of less value $(2\rightarrow 3)$
 - Specialty feeds
 - Larval feeds
 - Starting diets
 - Finishing diets
- Finally, commodities $(3\rightarrow 4)$
 - HUFA

and

- Proteins

Summary

- Demand for fish oil and fishmeal is outstripping supply
- Microalgae are a superior source of fish nutrition
- Transformational innovations are required to establish commercially attractive, sustainable alternatives for commodity feed production
- Cost is high but Synthetic Biology technology is driving the cost down by enhancing
 - Photosynthetic efficiency
 - Carbon partitioning
 - Robustness

